For this coding example, we use the ‘Bell’ dataset, which comes form
a bacterial biodiversity experiment
(Bell
et al., 2005) where the effect of 72 different bacterial
species (whose proportions are represented in columns
p1-p72) on the daily respiration rate
of their communities was measured as a response.
data("Bell")
head(Bell)
id
|
community
|
richness
|
p1
|
p2
|
p3
|
p4
|
p5
|
p6
|
p7
|
p8
|
p9
|
p10
|
p11
|
p12
|
p13
|
p14
|
p15
|
p16
|
p17
|
p18
|
p19
|
p20
|
p21
|
p22
|
p23
|
p24
|
p25
|
p26
|
p27
|
p28
|
p29
|
p30
|
p31
|
p32
|
p33
|
p34
|
p35
|
p36
|
p37
|
p38
|
p39
|
p40
|
p41
|
p42
|
p43
|
p44
|
p45
|
p46
|
p47
|
p48
|
p49
|
p50
|
p51
|
p52
|
p53
|
p54
|
p55
|
p56
|
p57
|
p58
|
p59
|
p60
|
p61
|
p62
|
p63
|
p64
|
p65
|
p66
|
p67
|
p68
|
p69
|
p70
|
p71
|
p72
|
response
|
1
|
1
|
1
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
8.769750
|
2
|
2
|
1
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
5.626893
|
3
|
3
|
1
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
9.712607
|
4
|
4
|
1
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3.426893
|
5
|
5
|
1
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
3.819750
|
6
|
6
|
1
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
4.448321
|
We begin by fitting the ID and AV DI models, using the DImodels R package. We compare them using an F-test as
they are nested in structure.
model_ID <- DI(y = "response", prop = 4:75, DImodel = "ID", data = Bell)
## Warning in DI_data_prepare(y = y, block = block, density = density, prop = prop, : One or more rows have species proportions that sum to approximately 1, but not exactly 1. This is typically a rounding issue, and has been corrected internally prior to analysis.
## Fitted model: Species identity 'ID' DImodel
model_AV <- DI(y = "response", prop = 4:75, DImodel = "AV", data = Bell)
## Warning in DI_data_prepare(y = y, block = block, density = density, prop = prop, : One or more rows have species proportions that sum to approximately 1, but not exactly 1. This is typically a rounding issue, and has been corrected internally prior to analysis.
## Fitted model: Average interactions 'AV' DImodel
anova(model_ID, model_AV, test = "F")
## Analysis of Deviance Table
##
## Model 1: response ~ 0 + p1_ID + p2_ID + p3_ID + p4_ID + p5_ID + p6_ID +
## p7_ID + p8_ID + p9_ID + p10_ID + p11_ID + p12_ID + p13_ID +
## p14_ID + p15_ID + p16_ID + p17_ID + p18_ID + p19_ID + p20_ID +
## p21_ID + p22_ID + p23_ID + p24_ID + p25_ID + p26_ID + p27_ID +
## p28_ID + p29_ID + p30_ID + p31_ID + p32_ID + p33_ID + p34_ID +
## p35_ID + p36_ID + p37_ID + p38_ID + p39_ID + p40_ID + p41_ID +
## p42_ID + p43_ID + p44_ID + p45_ID + p46_ID + p47_ID + p48_ID +
## p49_ID + p50_ID + p51_ID + p52_ID + p53_ID + p54_ID + p55_ID +
## p56_ID + p57_ID + p58_ID + p59_ID + p60_ID + p61_ID + p62_ID +
## p63_ID + p64_ID + p65_ID + p66_ID + p67_ID + p68_ID + p69_ID +
## p70_ID + p71_ID + p72_ID + 0
## Model 2: response ~ 0 + p1_ID + p2_ID + p3_ID + p4_ID + p5_ID + p6_ID +
## p7_ID + p8_ID + p9_ID + p10_ID + p11_ID + p12_ID + p13_ID +
## p14_ID + p15_ID + p16_ID + p17_ID + p18_ID + p19_ID + p20_ID +
## p21_ID + p22_ID + p23_ID + p24_ID + p25_ID + p26_ID + p27_ID +
## p28_ID + p29_ID + p30_ID + p31_ID + p32_ID + p33_ID + p34_ID +
## p35_ID + p36_ID + p37_ID + p38_ID + p39_ID + p40_ID + p41_ID +
## p42_ID + p43_ID + p44_ID + p45_ID + p46_ID + p47_ID + p48_ID +
## p49_ID + p50_ID + p51_ID + p52_ID + p53_ID + p54_ID + p55_ID +
## p56_ID + p57_ID + p58_ID + p59_ID + p60_ID + p61_ID + p62_ID +
## p63_ID + p64_ID + p65_ID + p66_ID + p67_ID + p68_ID + p69_ID +
## p70_ID + p71_ID + p72_ID + AV + 0
## Resid. Df Resid. Dev Df Deviance F Pr(>F)
## 1 1302 11347
## 2 1301 10297 1 1050.5 132.73 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
As the p-value is < 0.05, we reject the null hypothesis and take the
AV structure as our preferred model.
Next, we estimate a value for the non-linear parameter \(\theta\) using the AV structure (as the
FULL model would contain a large number of parameters).
model_AV_theta <- DI(y = "response", prop = 4:75, DImodel = "AV", estimate_theta = TRUE, data = Bell)
## Warning in DI_data_prepare(y = y, block = block, density = density, prop = prop, : One or more rows have species proportions that sum to approximately 1, but not exactly 1. This is typically a rounding issue, and has been corrected internally prior to analysis.
## Fitted model: Average interactions 'AV' DImodel
## Theta estimate: 0.7917
AIC(model_AV)
## [1] 6814.613
AIC(model_AV_theta)
## [1] 6751.12
As the AIC of the model with \(\theta\) included is lower, we opt to
include this estimate of the non-linear parameter over a value of
1.
Next, as there are no functional groups supplied for the 72 species,
we fit the ADD model, and compare to our new AV model using an
F-test.
theta <- model_AV_theta$coefficients['theta']
model_ADD <- DI(y = "response", prop = 4:75, DImodel = "ADD", theta = theta, data = Bell)
## Warning in DI_data_prepare(y = y, block = block, density = density, prop = prop, : One or more rows have species proportions that sum to approximately 1, but not exactly 1. This is typically a rounding issue, and has been corrected internally prior to analysis.
## Fitted model: Additive species contributions to interactions 'ADD' DImodel
anova(model_AV_theta, model_ADD, test = "F")
## Analysis of Deviance Table
##
## Model 1: response ~ 0 + p1_ID + p2_ID + p3_ID + p4_ID + p5_ID + p6_ID +
## p7_ID + p8_ID + p9_ID + p10_ID + p11_ID + p12_ID + p13_ID +
## p14_ID + p15_ID + p16_ID + p17_ID + p18_ID + p19_ID + p20_ID +
## p21_ID + p22_ID + p23_ID + p24_ID + p25_ID + p26_ID + p27_ID +
## p28_ID + p29_ID + p30_ID + p31_ID + p32_ID + p33_ID + p34_ID +
## p35_ID + p36_ID + p37_ID + p38_ID + p39_ID + p40_ID + p41_ID +
## p42_ID + p43_ID + p44_ID + p45_ID + p46_ID + p47_ID + p48_ID +
## p49_ID + p50_ID + p51_ID + p52_ID + p53_ID + p54_ID + p55_ID +
## p56_ID + p57_ID + p58_ID + p59_ID + p60_ID + p61_ID + p62_ID +
## p63_ID + p64_ID + p65_ID + p66_ID + p67_ID + p68_ID + p69_ID +
## p70_ID + p71_ID + p72_ID + AV + 0
## Model 2: response ~ 0 + p1_ID + p2_ID + p3_ID + p4_ID + p5_ID + p6_ID +
## p7_ID + p8_ID + p9_ID + p10_ID + p11_ID + p12_ID + p13_ID +
## p14_ID + p15_ID + p16_ID + p17_ID + p18_ID + p19_ID + p20_ID +
## p21_ID + p22_ID + p23_ID + p24_ID + p25_ID + p26_ID + p27_ID +
## p28_ID + p29_ID + p30_ID + p31_ID + p32_ID + p33_ID + p34_ID +
## p35_ID + p36_ID + p37_ID + p38_ID + p39_ID + p40_ID + p41_ID +
## p42_ID + p43_ID + p44_ID + p45_ID + p46_ID + p47_ID + p48_ID +
## p49_ID + p50_ID + p51_ID + p52_ID + p53_ID + p54_ID + p55_ID +
## p56_ID + p57_ID + p58_ID + p59_ID + p60_ID + p61_ID + p62_ID +
## p63_ID + p64_ID + p65_ID + p66_ID + p67_ID + p68_ID + p69_ID +
## p70_ID + p71_ID + p72_ID + p1_add + p2_add + p3_add + p4_add +
## p5_add + p6_add + p7_add + p8_add + p9_add + p10_add + p11_add +
## p12_add + p13_add + p14_add + p15_add + p16_add + p17_add +
## p18_add + p19_add + p20_add + p21_add + p22_add + p23_add +
## p24_add + p25_add + p26_add + p27_add + p28_add + p29_add +
## p30_add + p31_add + p32_add + p33_add + p34_add + p35_add +
## p36_add + p37_add + p38_add + p39_add + p40_add + p41_add +
## p42_add + p43_add + p44_add + p45_add + p46_add + p47_add +
## p48_add + p49_add + p50_add + p51_add + p52_add + p53_add +
## p54_add + p55_add + p56_add + p57_add + p58_add + p59_add +
## p60_add + p61_add + p62_add + p63_add + p64_add + p65_add +
## p66_add + p67_add + p68_add + p69_add + p70_add + p71_add +
## p72_add + 0
## Resid. Df Resid. Dev Df Deviance F Pr(>F)
## 1 1300 9817.4
## 2 1229 9341.5 71 475.92 0.8819 0.7462
We can see that the AV model is preferred.
Finally, we fit the FULL DI model and compare this to our AV model
with \(\theta\).
model_FULL <- DI(y = "response", prop = 4:75, DImodel = "FULL", theta = theta, data = Bell)
## Warning in DI_data_prepare(y = y, block = block, density = density, prop = prop, : One or more rows have species proportions that sum to approximately 1, but not exactly 1. This is typically a rounding issue, and has been corrected internally prior to analysis.
## Fitted model: Separate pairwise interactions 'FULL' DImodel
anova(model_AV_theta, model_FULL, test = "F")
## Analysis of Deviance Table
##
## Model 1: response ~ 0 + p1_ID + p2_ID + p3_ID + p4_ID + p5_ID + p6_ID +
## p7_ID + p8_ID + p9_ID + p10_ID + p11_ID + p12_ID + p13_ID +
## p14_ID + p15_ID + p16_ID + p17_ID + p18_ID + p19_ID + p20_ID +
## p21_ID + p22_ID + p23_ID + p24_ID + p25_ID + p26_ID + p27_ID +
## p28_ID + p29_ID + p30_ID + p31_ID + p32_ID + p33_ID + p34_ID +
## p35_ID + p36_ID + p37_ID + p38_ID + p39_ID + p40_ID + p41_ID +
## p42_ID + p43_ID + p44_ID + p45_ID + p46_ID + p47_ID + p48_ID +
## p49_ID + p50_ID + p51_ID + p52_ID + p53_ID + p54_ID + p55_ID +
## p56_ID + p57_ID + p58_ID + p59_ID + p60_ID + p61_ID + p62_ID +
## p63_ID + p64_ID + p65_ID + p66_ID + p67_ID + p68_ID + p69_ID +
## p70_ID + p71_ID + p72_ID + AV + 0
## Model 2: response ~ 0 + p1_ID + p2_ID + p3_ID + p4_ID + p5_ID + p6_ID +
## p7_ID + p8_ID + p9_ID + p10_ID + p11_ID + p12_ID + p13_ID +
## p14_ID + p15_ID + p16_ID + p17_ID + p18_ID + p19_ID + p20_ID +
## p21_ID + p22_ID + p23_ID + p24_ID + p25_ID + p26_ID + p27_ID +
## p28_ID + p29_ID + p30_ID + p31_ID + p32_ID + p33_ID + p34_ID +
## p35_ID + p36_ID + p37_ID + p38_ID + p39_ID + p40_ID + p41_ID +
## p42_ID + p43_ID + p44_ID + p45_ID + p46_ID + p47_ID + p48_ID +
## p49_ID + p50_ID + p51_ID + p52_ID + p53_ID + p54_ID + p55_ID +
## p56_ID + p57_ID + p58_ID + p59_ID + p60_ID + p61_ID + p62_ID +
## p63_ID + p64_ID + p65_ID + p66_ID + p67_ID + p68_ID + p69_ID +
## p70_ID + p71_ID + p72_ID + `p1:p2` + `p1:p3` + `p1:p4` +
## `p1:p5` + `p1:p6` + `p1:p7` + `p1:p8` + `p1:p9` + `p1:p10` +
## `p1:p11` + `p1:p12` + `p1:p13` + `p1:p14` + `p1:p15` + `p1:p16` +
## `p1:p17` + `p1:p18` + `p1:p19` + `p1:p20` + `p1:p21` + `p1:p22` +
## `p1:p23` + `p1:p24` + `p1:p25` + `p1:p26` + `p1:p27` + `p1:p28` +
## `p1:p29` + `p1:p30` + `p1:p31` + `p1:p32` + `p1:p33` + `p1:p34` +
## `p1:p35` + `p1:p36` + `p1:p37` + `p1:p38` + `p1:p39` + `p1:p40` +
## `p1:p41` + `p1:p42` + `p1:p43` + `p1:p44` + `p1:p45` + `p1:p46` +
## `p1:p47` + `p1:p48` + `p1:p49` + `p1:p50` + `p1:p52` + `p1:p71` +
## `p2:p3` + `p2:p4` + `p2:p5` + `p2:p6` + `p2:p7` + `p2:p8` +
## `p2:p9` + `p2:p10` + `p2:p11` + `p2:p12` + `p2:p13` + `p2:p14` +
## `p2:p15` + `p2:p16` + `p2:p17` + `p2:p18` + `p2:p19` + `p2:p20` +
## `p2:p21` + `p2:p22` + `p2:p23` + `p2:p24` + `p2:p25` + `p2:p26` +
## `p2:p27` + `p2:p28` + `p2:p29` + `p2:p30` + `p2:p31` + `p2:p32` +
## `p2:p33` + `p2:p34` + `p2:p35` + `p2:p36` + `p2:p37` + `p2:p38` +
## `p2:p39` + `p2:p40` + `p2:p41` + `p2:p44` + `p2:p47` + `p2:p69` +
## `p3:p4` + `p3:p5` + `p3:p6` + `p3:p7` + `p3:p8` + `p3:p9` +
## `p3:p10` + `p3:p11` + `p3:p12` + `p3:p13` + `p3:p14` + `p3:p15` +
## `p3:p16` + `p3:p17` + `p3:p19` + `p3:p20` + `p3:p22` + `p3:p23` +
## `p3:p24` + `p3:p27` + `p3:p28` + `p3:p29` + `p3:p30` + `p3:p31` +
## `p3:p32` + `p3:p34` + `p3:p35` + `p3:p37` + `p3:p38` + `p3:p40` +
## `p3:p55` + `p3:p58` + `p3:p59` + `p3:p67` + `p4:p5` + `p4:p6` +
## `p4:p7` + `p4:p8` + `p4:p9` + `p4:p10` + `p4:p11` + `p4:p12` +
## `p4:p14` + `p4:p15` + `p4:p16` + `p4:p17` + `p4:p18` + `p4:p19` +
## `p4:p20` + `p4:p23` + `p4:p24` + `p4:p26` + `p4:p28` + `p4:p29` +
## `p4:p30` + `p4:p32` + `p4:p33` + `p4:p34` + `p4:p36` + `p4:p37` +
## `p4:p38` + `p4:p39` + `p4:p46` + `p4:p54` + `p5:p6` + `p5:p7` +
## `p5:p8` + `p5:p9` + `p5:p10` + `p5:p11` + `p5:p12` + `p5:p13` +
## `p5:p14` + `p5:p15` + `p5:p16` + `p5:p17` + `p5:p18` + `p5:p19` +
## `p5:p20` + `p5:p21` + `p5:p22` + `p5:p23` + `p5:p24` + `p5:p25` +
## `p5:p26` + `p5:p27` + `p5:p28` + `p5:p29` + `p5:p30` + `p5:p31` +
## `p5:p32` + `p5:p35` + `p5:p39` + `p5:p40` + `p5:p48` + `p5:p49` +
## `p5:p70` + `p6:p7` + `p6:p8` + `p6:p9` + `p6:p10` + `p6:p11` +
## `p6:p12` + `p6:p13` + `p6:p14` + `p6:p15` + `p6:p16` + `p6:p17` +
## `p6:p19` + `p6:p21` + `p6:p22` + `p6:p23` + `p6:p24` + `p6:p25` +
## `p6:p26` + `p6:p27` + `p6:p29` + `p6:p30` + `p6:p31` + `p6:p34` +
## `p6:p39` + `p6:p41` + `p6:p45` + `p6:p52` + `p6:p61` + `p6:p63` +
## `p7:p8` + `p7:p9` + `p7:p10` + `p7:p11` + `p7:p12` + `p7:p13` +
## `p7:p14` + `p7:p15` + `p7:p16` + `p7:p17` + `p7:p20` + `p7:p21` +
## `p7:p22` + `p7:p25` + `p7:p26` + `p7:p27` + `p7:p31` + `p7:p33` +
## `p7:p34` + `p7:p37` + `p7:p44` + `p7:p52` + `p7:p58` + `p7:p61` +
## `p7:p68` + `p8:p9` + `p8:p10` + `p8:p11` + `p8:p12` + `p8:p15` +
## `p8:p16` + `p8:p17` + `p8:p18` + `p8:p19` + `p8:p21` + `p8:p24` +
## `p8:p25` + `p8:p26` + `p8:p31` + `p8:p49` + `p8:p56` + `p8:p67` +
## `p9:p10` + `p9:p11` + `p9:p13` + `p9:p14` + `p9:p15` + `p9:p16` +
## `p9:p17` + `p9:p18` + `p9:p22` + `p9:p23` + `p9:p24` + `p9:p28` +
## `p9:p30` + `p9:p31` + `p9:p33` + `p9:p35` + `p9:p36` + `p9:p42` +
## `p9:p55` + `p9:p70` + `p9:p72` + `p10:p11` + `p10:p13` +
## `p10:p14` + `p10:p15` + `p10:p16` + `p10:p17` + `p10:p18` +
## `p10:p20` + `p10:p21` + `p10:p27` + `p10:p29` + `p10:p31` +
## `p10:p48` + `p10:p50` + `p10:p52` + `p10:p59` + `p10:p62` +
## `p10:p71` + `p11:p13` + `p11:p15` + `p11:p18` + `p11:p21` +
## `p11:p22` + `p11:p23` + `p11:p24` + `p11:p26` + `p11:p27` +
## `p11:p29` + `p11:p30` + `p11:p31` + `p11:p32` + `p11:p33` +
## `p11:p38` + `p11:p57` + `p12:p14` + `p12:p15` + `p12:p16` +
## `p12:p17` + `p12:p20` + `p12:p21` + `p12:p22` + `p12:p23` +
## `p12:p24` + `p12:p27` + `p12:p28` + `p12:p32` + `p12:p34` +
## `p12:p35` + `p12:p39` + `p12:p46` + `p12:p48` + `p12:p58` +
## `p12:p61` + `p12:p62` + `p12:p67` + `p13:p14` + `p13:p15` +
## `p13:p16` + `p13:p19` + `p13:p21` + `p13:p22` + `p13:p23` +
## `p13:p26` + `p13:p27` + `p13:p28` + `p13:p32` + `p13:p33` +
## `p13:p34` + `p13:p36` + `p13:p41` + `p13:p43` + `p13:p45` +
## `p13:p50` + `p13:p54` + `p13:p56` + `p14:p15` + `p14:p18` +
## `p14:p21` + `p14:p22` + `p14:p23` + `p14:p28` + `p14:p34` +
## `p14:p38` + `p14:p40` + `p14:p42` + `p14:p49` + `p14:p59` +
## `p14:p64` + `p14:p65` + `p14:p68` + `p15:p16` + `p15:p19` +
## `p15:p28` + `p15:p35` + `p15:p36` + `p15:p41` + `p15:p42` +
## `p15:p46` + `p15:p50` + `p15:p72` + `p16:p17` + `p16:p23` +
## `p16:p28` + `p16:p30` + `p16:p31` + `p16:p32` + `p16:p40` +
## `p16:p44` + `p16:p47` + `p16:p51` + `p16:p54` + `p17:p20` +
## `p17:p21` + `p17:p22` + `p17:p24` + `p17:p25` + `p17:p26` +
## `p17:p27` + `p17:p32` + `p17:p34` + `p17:p37` + `p17:p43` +
## `p17:p47` + `p17:p49` + `p17:p50` + `p17:p58` + `p18:p20` +
## `p18:p21` + `p18:p22` + `p18:p23` + `p18:p27` + `p18:p33` +
## `p18:p35` + `p18:p41` + `p18:p46` + `p18:p50` + `p18:p52` +
## `p18:p71` + `p19:p20` + `p19:p21` + `p19:p22` + `p19:p25` +
## `p19:p28` + `p19:p29` + `p19:p33` + `p19:p35` + `p19:p43` +
## `p19:p54` + `p19:p59` + `p19:p61` + `p20:p23` + `p20:p24` +
## `p20:p27` + `p20:p29` + `p20:p32` + `p20:p37` + `p20:p39` +
## `p20:p48` + `p20:p51` + `p20:p53` + `p20:p55` + `p20:p60` +
## `p21:p22` + `p21:p24` + `p21:p25` + `p21:p30` + `p21:p33` +
## `p21:p39` + `p21:p43` + `p21:p48` + `p21:p49` + `p21:p68` +
## `p21:p69` + `p22:p24` + `p22:p30` + `p22:p35` + `p22:p47` +
## `p22:p48` + `p22:p50` + `p22:p54` + `p22:p55` + `p22:p56` +
## `p23:p28` + `p23:p31` + `p23:p37` + `p23:p44` + `p23:p55` +
## `p23:p62` + `p23:p66` + `p24:p31` + `p24:p35` + `p24:p39` +
## `p24:p44` + `p24:p49` + `p24:p52` + `p24:p57` + `p25:p27` +
## `p25:p30` + `p25:p31` + `p25:p32` + `p25:p34` + `p25:p37` +
## `p25:p40` + `p25:p46` + `p25:p53` + `p25:p70` + `p26:p32` +
## `p26:p37` + `p26:p38` + `p26:p45` + `p26:p50` + `p26:p53` +
## `p26:p56` + `p26:p63` + `p27:p34` + `p27:p36` + `p27:p64` +
## `p27:p67` + `p27:p71` + `p28:p29` + `p28:p30` + `p28:p41` +
## `p28:p49` + `p28:p50` + `p28:p52` + `p28:p56` + `p29:p31` +
## `p29:p32` + `p29:p34` + `p29:p35` + `p29:p36` + `p29:p55` +
## `p29:p56` + `p29:p59` + `p30:p31` + `p30:p32` + `p30:p38` +
## `p30:p39` + `p30:p44` + `p30:p45` + `p30:p51` + `p30:p60` +
## `p31:p40` + `p31:p43` + `p32:p37` + `p32:p39` + `p32:p62` +
## `p33:p46` + `p33:p53` + `p34:p39` + `p34:p49` + `p35:p43` +
## `p35:p50` + `p35:p66` + `p36:p39` + `p36:p42` + `p36:p64` +
## `p37:p39` + `p37:p48` + `p37:p52` + `p38:p43` + `p38:p45` +
## `p38:p46` + `p38:p53` + `p38:p61` + `p39:p49` + `p39:p64` +
## `p39:p65` + `p39:p69` + `p40:p42` + `p40:p47` + `p40:p58` +
## `p40:p59` + `p40:p62` + `p41:p42` + `p41:p43` + `p41:p44` +
## `p41:p57` + `p41:p65` + `p41:p66` + `p41:p71` + `p42:p51` +
## `p42:p55` + `p42:p58` + `p43:p44` + `p43:p45` + `p43:p47` +
## `p43:p70` + `p44:p47` + `p45:p46` + `p45:p63` + `p45:p66` +
## `p45:p68` + `p46:p47` + `p46:p63` + `p46:p65` + `p46:p72` +
## `p47:p64` + `p47:p66` + `p47:p68` + `p47:p70` + `p48:p56` +
## `p48:p67` + `p49:p54` + `p50:p60` + `p51:p52` + `p51:p65` +
## `p51:p66` + `p52:p57` + `p52:p58` + `p53:p54` + `p53:p60` +
## `p53:p72` + `p54:p58` + `p55:p57` + `p56:p59` + `p56:p63` +
## `p57:p60` + `p58:p62` + `p58:p63` + `p59:p61` + `p59:p70` +
## `p60:p64` + `p64:p69` + `p71:p72`
## Resid. Df Resid. Dev Df Deviance F Pr(>F)
## 1 1300 9817.4
## 2 694 5239.0 606 4578.4 1.0008 0.4951
As no structural terms or species groupings are included in this
dataset, we can stop our model selection process here, with the AV
model, using an estimated value of \(\theta =
0.7917\).
summary(model_AV_theta)
##
## Call:
## glm(formula = formula(obj), family = family, data = data_theta_E_AV)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## p1_ID 6.3646 1.0859 5.861 5.82e-09 ***
## p2_ID 6.2287 1.0892 5.718 1.33e-08 ***
## p3_ID 4.1466 1.0836 3.827 0.000136 ***
## p4_ID 2.9689 1.0784 2.753 0.005988 **
## p5_ID 3.8825 1.0796 3.596 0.000335 ***
## p6_ID 6.1671 1.0781 5.720 1.32e-08 ***
## p7_ID 4.1201 1.0829 3.805 0.000149 ***
## p8_ID 2.2673 1.0827 2.094 0.036447 *
## p9_ID 4.0724 1.0758 3.786 0.000160 ***
## p10_ID 7.7669 1.0847 7.160 1.34e-12 ***
## p11_ID 4.2444 1.0796 3.932 8.88e-05 ***
## p12_ID 5.6520 1.0775 5.245 1.82e-07 ***
## p13_ID 3.2082 1.0777 2.977 0.002966 **
## p14_ID 4.2334 1.0894 3.886 0.000107 ***
## p15_ID 6.0592 1.0955 5.531 3.84e-08 ***
## p16_ID 5.0915 1.0822 4.705 2.81e-06 ***
## p17_ID 6.7652 1.0839 6.242 5.85e-10 ***
## p18_ID 3.8568 1.0770 3.581 0.000355 ***
## p19_ID 4.0477 1.0780 3.755 0.000181 ***
## p20_ID 8.5007 1.0854 7.832 9.93e-15 ***
## p21_ID 4.8163 1.0771 4.472 8.44e-06 ***
## p22_ID 7.1037 1.0792 6.583 6.69e-11 ***
## p23_ID 5.0405 1.0908 4.621 4.20e-06 ***
## p24_ID 5.4132 1.0753 5.034 5.47e-07 ***
## p25_ID 3.6078 1.0786 3.345 0.000847 ***
## p26_ID 8.0247 1.0807 7.426 2.02e-13 ***
## p27_ID 5.2696 1.0787 4.885 1.16e-06 ***
## p28_ID 6.7333 1.0791 6.240 5.92e-10 ***
## p29_ID 4.8043 1.0817 4.441 9.70e-06 ***
## p30_ID 7.3342 1.0869 6.748 2.26e-11 ***
## p31_ID 5.7395 1.0807 5.311 1.28e-07 ***
## p32_ID 4.0018 1.0862 3.684 0.000239 ***
## p33_ID 6.1309 1.0819 5.667 1.79e-08 ***
## p34_ID 3.7866 1.0827 3.498 0.000485 ***
## p35_ID 6.0693 1.0879 5.579 2.94e-08 ***
## p36_ID 7.9278 1.0869 7.294 5.20e-13 ***
## p37_ID 4.1578 1.0928 3.805 0.000149 ***
## p38_ID 6.3038 1.0828 5.822 7.33e-09 ***
## p39_ID 5.5015 1.0783 5.102 3.86e-07 ***
## p40_ID 4.9836 1.0811 4.610 4.43e-06 ***
## p41_ID 5.0221 1.0799 4.650 3.65e-06 ***
## p42_ID 4.7914 1.0799 4.437 9.89e-06 ***
## p43_ID 4.3587 1.0774 4.046 5.53e-05 ***
## p44_ID 3.0150 1.0811 2.789 0.005368 **
## p45_ID 3.5245 1.0800 3.263 0.001129 **
## p46_ID 4.7406 1.0880 4.357 1.42e-05 ***
## p47_ID 6.0698 1.0853 5.593 2.72e-08 ***
## p48_ID 3.6449 1.0835 3.364 0.000791 ***
## p49_ID 5.2338 1.0776 4.857 1.34e-06 ***
## p50_ID 5.9314 1.0803 5.490 4.82e-08 ***
## p51_ID 3.5477 1.0890 3.258 0.001152 **
## p52_ID 5.7565 1.0948 5.258 1.70e-07 ***
## p53_ID 5.9139 1.0778 5.487 4.92e-08 ***
## p54_ID 4.7276 1.0821 4.369 1.35e-05 ***
## p55_ID 5.2633 1.0794 4.876 1.21e-06 ***
## p56_ID 2.1691 1.0804 2.008 0.044887 *
## p57_ID 5.6533 1.0881 5.196 2.36e-07 ***
## p58_ID 5.4465 1.0789 5.048 5.09e-07 ***
## p59_ID 4.0392 1.0815 3.735 0.000196 ***
## p60_ID 8.5768 1.0844 7.909 5.49e-15 ***
## p61_ID 7.7501 1.0796 7.179 1.18e-12 ***
## p62_ID 4.7129 1.0866 4.337 1.55e-05 ***
## p63_ID 7.6098 1.0792 7.051 2.88e-12 ***
## p64_ID 3.9122 1.0945 3.574 0.000364 ***
## p65_ID 4.1076 1.0792 3.806 0.000148 ***
## p66_ID 6.1803 1.0814 5.715 1.36e-08 ***
## p67_ID 3.1658 1.0857 2.916 0.003606 **
## p68_ID 6.6770 1.0845 6.157 9.89e-10 ***
## p69_ID 5.2784 1.0949 4.821 1.60e-06 ***
## p70_ID 3.7960 1.0825 3.507 0.000469 ***
## p71_ID 3.5271 1.0792 3.268 0.001110 **
## p72_ID 3.6436 1.0833 3.364 0.000792 ***
## AV 2.1432 0.1506 14.233 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 7.551858)
##
## Null deviance: 71872.9 on 1374 degrees of freedom
## Residual deviance: 9817.4 on 1300 degrees of freedom
## AIC: 6751.1
##
## Number of Fisher Scoring iterations: 2